Conference Proceedings
New Friends 2015

The 1st international conference on social robots in therapy and education
Introduction

The proceedings of the international conference New Friends 2015 reflect the multidisciplinary nature of the conference theme, addressing the demand for expertise in both practice and research with expertise from a wide range of disciplines, like psychology, nursing, occupational therapy, physiotherapy, AI, robotics and education.

The event featured keynotes by Vanessa Evers and Matthias Scheutz, oral and poster presentations (based on 48 accepted submissions), product and business demonstrations, competitions and practice oriented workshops, covering:

- practitioners’ perspective of end users’ needs,
- good examples of trials, practice and intervention guidelines,
- interdisciplinary collaboration,
- innovations in robotics, therapy and education
- theoretical studies and empirical research,
- legal, ethical, philosophical and social issues.

We welcomed 118 registered attendees, not including representatives from sponsoring companies and institutions, local co-organizers and student volunteers. This is quite respectable for a 1st conference and demonstrates the relevance of the conference theme and profile.

In recognition of this, we are proud to announce that this will be the first in a series: next year we hope to see you again at New Friends 2016 in Barcelona!

We thank the following people for making this possible with their contribution to this conference: Sytse Dugour, Wytse Miedema, Adam Hagman, Cristina Abad Moya, Adri Acero Montes, Atina Hrakc, Tom Ederveen, Vanessa Evers, Miquel Aranaz

And we explicitly like to express our gratitude to our sponsors: Robotdalen, Aisoy Robotics, Robin Robotics, OMFL, Gemeente Almere, Cinnovate, GWIA, M&I/Partners

On behalf of the organizing committee,

Marcel Heerink

General chair
Organizing Committee

Marcel Heerink
Windesheim University of Applied Sciences
Almere, The Netherlands

Bram Vanderborght
Vrije Universiteit Brussel
Brussels, Belgium

Jordi Albo-Canals
Tufts University
Boston, US

Alex Barco-Martelo
LaSalle University
Barcelona, Spain and Almere, The Netherlands

Lars Asplund, Christine Gustafsson
Malardalen University
Eskilstuna, Sweden

Claire Huijnen
Zuyd University of Applied Sciences
Heerlen, The Netherlands

Joost Broekens
Delft Technical University
Delft, The Netherlands

Program committee

Bram Vanderborght
Christine Gustafsson
Jordi Albo-Canals
Marcel Heerink
Rianne Jansens
Renee van den Heuvel

Local organization

Mary Verspaget
Brigitte Toes
Sjoerd de Vos
Juan Besselse
Wieke van Wijngaarden
Saskia van Oenen

Reviewers

Sandra Bedaf, Mohamed Bouri, Hoang-Long Cao, Mark Coeckelbergh, Cristina Costescu, Eduard Fosch Villaronga, Pablo Gomez Esteban, Michiel Joosse, Kitty Jurrius, Marcus Persson, Aaron Pica, Ramona Simut, Loek van der Heide, Saskia van Oenen, Cesar Van de velde, Sjoerd de Vos, Charlotte Vissenberg, Yueh-Hsuan Weng, Francis Wyffels
Oral session papers

Education & children with special needs 1 Session chairs: Joost Broekens and Rosemarijn Looije

- Jordi Albo-Canals, Carolina Yañez, Alex Barco, Cecilio Angulo and Marcel Heerink. *Modelling Social Skills and Problem Solving Strategies used by Children with ASD through Cloud Connected Social Robots as Data Loggers: First Modelling Approach* 8
- Claire Huijnen, Monique Lexis and Luc de Witte. *Matching Robot KASPAR To ASD Therapy And Educational Goals* 10
- Alex Barco, Jordi Albo-Canals, Carles Garriga-Berga, Begoña Garcia-Zapirain and Álvaro Sánchez. *LEGO robot with multitouch device connected to sensors and actuators for physical and cognitive rehabilitation in elderly people and kids with special needs* 14

Dementia, eldercare & independent living Session chairs: Christine Gustafsson and Lars Asplund

- Marcus Persson. *The impact of an Interactive Robotic Cat on Dementia Caregivers’ Psychosocial Work Environment – a Pilot Study* 16
- Sandra Bedaf and Luc de Witte. *Acceptability Of A Service Robot Which Supports Independent Living Of Elderly People* 18
- Tomohiro Susuzki, Sachie Yamada, Takayuki Kanda and Tatsuya Nomura. *Influence of Social Avoidance and Distress on People’s Preferences for Robots as Daily Life Communication Partners* 20
- Martina Heinemann, Meritxell Valenti Soler and Marcel Heerink. *Is it real? Dealing with an insecure perception of a pet robot in dementia care* 22

Education & children with special needs 2 Session chairs: Jordi Albo and Alex Barco

- Frances Wijnen, Vicky Charisi, Daniel Davison, Jan van der Meij, Dennis Reidsma and Vanessa Evers. *Inquiry learning with a social robot: can you explain that to me?* 24
- Jacqueline Kory Westlund, Leah Dickens, Sooyeon Jeong, Paul Harris, David Desteno and Cynthia Breazeal. *A Comparison of Children Learning New Words from Robots, Tablets, & People* 26
- Rosemarijn Looije, Mark A. Neerincx and Johanna K. Peters. *How do diabetic children react on a social robot during multiple sessions in a hospital?* 28

Human-robot relationships Session chairs: Claire Huijnen and Renee van den Heuvel

- Maartje de Graaf. *The Ethics of Human-Robot Relationships* 34
- Eduard Fosch Villaronga and Jordi Albo-Canals. *Boundaries in Play-based Cloud-companion-mediated Robotic Therapies: From Deception to Privacy Concerns* 40

Posters session papers & late-breaking reports

- Maria Vircikova, Gergely Magyar and Peter Sincak. *Cloud-based Social Robot that Learns to Motivate Children as an Assistant in Back-Pain Therapy and as a Foreign-Language Tutor* 44
- Renée van den Heuvel, Monique Lexis and Luc de Witte. *Possibilities Of The IROMEC Robot For Children With Severe Physical Disabilities* 46
- Jered Vroon, Jaebok Kim and Raphaël Koster. *Robot Response Behaviors To Accommodate Hearing Problems* 48
- Barbara Klein, Karin Dunkel, Sebastian Reutzel and Stefanie Selic. *Suitability of a Telepresence Robot for* 52
Counseling on Home Modification and Independent Living
Roger Bemelmans and Luc de Witte. A Pilot Study On The Feasibility of Paro Interventions In Intramural Care For Intellectual Disabled Clients

54

Carolin Straßmann, Astrid Marieke Rosenthal-Von der Pütten and Nicole Krämer. NoAlien! Linguistic alignment with artificial entities in the context of second language acquisition

56

Beste Özcan, Gianluca Baldasarre, Maria Nicoletta Alberti and Tania Moretta. Transitional Wearables Based on Bio-Signals to Improve Communication and Interaction of Children with Autism

58

Igor Zubrycki, Jaroslaw Turajczyk and Grzegorz Granosik. Roboterapia: an environment supporting therapists’ needs

60

Patrick Albo-Canals, Albert Valls, Vicens Casas, Olga Sans-Cope and Jordi Albo-Canals. AISOY Social Robot as a tool to learn how to code versus tangible and non-tangible approaches

62

Michael Anderson, Susan Anderson and Vincent Berenz. Ensuring Ethical Behavior from Autonomous Systems

64

66

Resheque Barua, Shimo Sraman and Marcel Heerink. Empathy, Compassion and Social Robots: an Approach from Buddhist Philosophy

68

Tecla S. Scholten, Charlotte Vissenberg and Marcel Heerink. Hygiene and the use of robotic animals: an exploration

70

Emelideth Valenzuela, Alex Barco and Jordi Albo-Canals. Learning Social Skills through LEGO-based Social Robots for Children with Autism Spectrum Disorder at CASPAN Center in Panama

72

Workshop papers: Bridging the Gaps between Different Worlds

A. Legal
Eduard Fosch Villaronga. Principles Involved in Care Robotics Legal Compliance.

76

Marcello Ienca. Intelligent Assistive Technologies for Dementia: Social, Legal and Ethical Implications.

78

B. Ethical

80

Rieks op den Akker. What do care robots reveal about technology?

82

Antonio Carnevale. ’I tech care’: The responsibility to provide healthcare using robots.

84

C. Social
Sofia Reppou et al. Robots and seniors: can they be friends?

86

Mark Coeckelberg et al. Survey investigating ethical issues concerning Robot Enhanced Therapy for children with autism.

88

90

D. Practical
Jorge Gallego-Perez. An HRI study with elderly participants? Where’s the problem?

92

Jordi Albo-Canals. Toy robots vs Medical Device

94

Mohamed Bouri. Which Perspectives of Using Exoskeletons in Activities for Daily Living?

96

Video´s and demo´s

Michael Anderson and Susan Anderson. Ensuring Ethical Behavior from Autonomous Systems

100

Peter van der Post, Robin Steffers, Aaron Pica, Robin Scheick and Marcel Heerink. Bonnie: Developing a Very Special Friend

101

Vito Mahalla, Peter van der Post, Alex Barco Martelo and Marcel Heerink. Remote Control Application for Therapeutic Use of a Social Robot

103

Tony Belpaeme, Paul Baxter, James Kennedy, Robin Read, Bernd Kiefer, Ivana Krujiff-Korbayová, Valentin Enescu, Georgios Patsis, Hichem Sahli, Bert Bierman, Olivier Blanson Henkemans, Rosemarijn Looije, Mark Neerincx, Raquel Ros Espinoza, Alexandre Coninx, Yiannis Demiris and Joachim de Greeff. Social Robots to Support Children with Diabetes: an Overview of the ALIZ-E Project

104
ABSTRACT

We propose a novel interaction method based on a type of wearable interfaces called transitional wearables (TW). TW allow gathering physiological data from children with autism and can be used to facilitate their communication and interaction with parents and caregivers during daily life activities. Communication plays a key role for the children's mental and social development [1]. The variable symptoms of autism are generally grouped under the name of autism spectrum disorder (ASD) [2]. ASD patients are characterized as having difficulties in social interaction [3], communication [4], tendency to fixate on limited interests and repetitive behaviors [2]. They show less interaction in free play situations and rarely initiate social interaction [5].

In several medical fields there is an increasing need for ecological monitoring of physiology variables to support medical interventions and therapies outside the clinical setting [6]: wearables with biosensors could contribute to meet this need. The application areas are numerous, for example there is an increasing interest in early-age detection of ASD as well as for exploiting the gathered knowledge to create better therapies [7]. Indeed, a main problem involving ASD's diagnosis, evaluation and treatment is the internal emotional state of the patient [9]. Canonical biosensors, however, do not have access to physiological data in real time in daily life or during therapeutic training, thus losing important information. Moreover, they are often expensive and difficult to use on certain types of patients, e.g. on ASD patients who refuse contact or low motion [8].

Our project aims to develop and test a novel wearable which is capable of real-time and long-term physiological monitoring by recording Galvanic Skin Response (GSR), Skin Temperature (SKT), and heartbeat, and also to use an accelerometer embedded on a wristband. These devices are low cost, low power, and non-intrusive [8]. While most studies done in this field (e.g., [10]–[12]) are restricted to measurements in laboratories, they have demonstrated that there is significant emotion-related information that can be recognized through physiological activity [13].

Our aim is to use this information to identify and translate physiological output into information on basic emotions understood by the caregiver. Real world’s expectations and judgments involved in social contexts might appear “unsafe” to children with autism and this makes social interactions problematic [4]. Many children with ASD develop an attachment to a “transitional object”, e.g. a teddy bear. This is used as a reliable source of soothing and confidence during the exploration of the world independently of parents and caregivers [14]. It is known that computer technologies have the potential to support children during interactions to facilitate their life. For instance: (1) interactive toys controlled by the child provide predictability through cause and effect functions and this reassures the child [15]; (2) form a safe bridge to the less predictable world formed by other objects and people; (3) accompany them in the daily world's learning and interactions (e.g., cleaning teeth, travelling in a car); (4) help learning to interact socially [16]. Wearable devices with biosensors can systematically collect information about actions and emotional states of children and communicate them wirelessly to an external computer (e.g., a mobile phone or a tablet). The information so gathered can be automatically processed based on pattern-recognition and other machine-learning algorithms and provide information usable at real-time to guide interventions, e.g. in the form of alert messages or text messages for the caregivers [17].

TW could gather bio-signals from children with autism during their social and collaborative activities in a friendly and comfortable way as they can be integrated easily in different types of objects, such as toys and clothing, without the child noticing the sensors. This would also provide a novel means through which multi-sensory feedbacks and cause-effect object behaviors could be used to motivate and reinforce social interaction while engaging in life and therapy activities [15]. The cause-effect nature of such type of interaction would give the child a higher sense of control and hence mitigate fearful and avoidance reactions [18].

Computers and other similar electronic devices tend to promote a non-social use and this could drive the child to further isolate from the outside world or become hyper focused, falling trapped in obsessive-compulsive behaviors. Instead, if suitably designed TW for children with autism can be used in daily life
contexts and thus can possibly have a positive impact on children’s social life [19]. For this purpose, positive/rewarding sensorial feedbacks from the wearables (e.g., colored LEDs, sounds) can be made dependent on the performance of communication actions with the caregivers. For their richness and programmable nature, TW could thus be used to facilitate exploration and development of divergent behaviors leading to “accommodate” to novel contexts, experiences, and social interactions [20]. By collaborating with therapists, psychologists, biomedical engineers, psychomotor therapists we are now prototyping design solutions of TW that are non-intrusive and allow the collection of data in children with ASD. We are also defining an experimental protocol to empirically test the TW with children with autism. The main objective of the test will be to verify the effectiveness of this approach by analyzing the recorded data related to emotional reactions of children to TW.

Keywords: Autism, transitional object, wearables based on biosensors, stable-reassuring interactions.

REFERENCES

